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ROBUST REGRESSION USING REPEATED MEDIANS

by

Andrew F. Siegel
Princeton University

ABSTRACT

The repeated median algorithm is a robustified U-statistic
in which nested medians replace the single mean. Unlike many
generalizations of the univariate median, repeated median esti-
mates maintain:the high 50% breakdown value and can resist the
effects of outliers even when they comprise nearly half of the
data. Because they are calculated directly, not iteratively,
repeated median procedures can be used as starting values for
iterative robust estimation methods. For bivariate Tinear regres-
sion with symmetric errors, repeated median estimates are unbiased
and Fisher consisfent. and their efficiency under Gaussian sampling

can be comparable to the efficiency of the univariate median.

Key Words: Breakdown Value, U-Statistic, Resistance.




1. INTRODUCTION

Robust regression procedures based on medians have been con-
sidered by Thiel(1950), Mood(1950, p.406), Brown and Mood(1951),
Sen(1968), Maritz(1979), and others. Such high-breakdown proce-
dures are of interest for several reasons. First, some applied
problems, including the editing of data, require maximal protec-
tion against the presence of outliers. Siegel and Benson (1980)
provide an example of this need in the comparison of shapes.
Secondly, many of the more efficient robust procedures, including
M-estimates (Huber, 1973) are iterative and require directly
computable resistant starting values (Andrews, 1974) to guard
against convergence to a non-robust local optimum near the least-
squares solution. Finally, the extreme case of high-breakdown
estimates should be wejl understood.

The repeated median algorithm is defined in Section 2 as a
modified U-statistic in which nested medians are used instead of
a single mean, and their computational complexity is found. The
breakdown value is shown in Section 3 to be 50%, the best possible
for unbounded invariant estimators and an improvement upon pre-
viously considered median procedures. Under suitable conditions,
repeated median estimates are unbiased and Fisher consistent, as
shown in Section 4, and their efficiency under Gaussian sampling

can be comparable to the efficiency of the univariate median.
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2. THE REPEATED MEDIAN ALGORITHM

We first consider the bivariate linear case of fitting a
robust line Y=A+BX to the data (xi,vi) » i=1,...,n with
distinct X; . Define the pairwise slope B(i,j)s(Yj-Yi)/(xj-xi)
of the line from point i to point J . These n(n-1)/2 slope
estimates will be condensed into a single number using two stages

of medians. The repeated median estimate of slope is

ﬁ = Me?ian {Mgg:an B(isj)}- (2°])

The inner median is the median slope of the 1ineszthat pass
through point i . We can visuyalize (2.1) as the median of the
column medians (or row medians, by symmetry) of the B(i,j) matrix,
ignoring entries along the main diagonal. This is not an iterative
method; if we calculate (2.1) using the residuals Ri=Yi-§xi in
place of Y1 , we obtain zero by additive invariance of the median.
The y~intercept A can be estimated in two ways. I[f we use
the value 8 Just estimated, a single median will suffice for

this hierarchical approach:

A1), Median (y g x) (2.2)
Otherwise, A can be estimated directly using a double median
as in (2.1) to obtain

~(2) _ Median  Median
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where A(i,j) = (XjYi-XiYJ)/(Xj-Xi) is the y-intercept of the
line connecting points i and j . Less time is required for
computing the hierarchical estimate (2.2), but direct estimation
(as in 2.3) is invariant to the ordering of the parameters A

and B .

The general repeated median algorithm is like a U-statistic
(Hoeffding, 1948), except that nested medians replace the over-
all mean. We therefore obtain a general procedure for estimating
a real parametér 8 whenever there is a positive integer k such
that every subset of k data points determines a value of 8 ;
say points numbered i]"“’ik determine e(i]....,ik) . The

mean of these estimates, if we have n data points in all, fis

the U-statistic.

1
fkl Z e(i-l,....ik) (2.4)
(151]<...<ik§n)

Using a median in place of the mean, we can robustify this some-
what to
Median
(Tedycon.ch en) (@Uqaeeaty )} (2.5)
which fncludes the case of regression estimates considered by
Thie1(1950) and Sen(1968).
Repeated median estimates use a succession of k partial

medians. Begin by reducing the number of indices from k ¢to

k-1




8(f750vvsiy 1o +) = Median 8(iysersiy) (2.6)
! k-1 I CIYOIE S S k

This process can be repeated, and with each median an index fis

deleted. Finally, the repeated median estimate is

§ = Median JMedian Median o(i i
i i iy} LY R PUSPURS FURS BRaR k

(2.7)
For example, in the multiple regression model

Y= A+ B]X] + BZXZ (2.8)

B1 would be estimated using a triple median
2 o Median [ Median | Median

wheré B,(1,3,k) is the 8]. coefficient of the plane (2.8) deter-
mined by points 1,j, and k. Colinearity problems can be handled
by considering only those triples that actually determine a value
for B]

When more than one parameter is to be estimated, they can be
estimated hierarchically using information on previously estimated
parameters at each stage or directly using (2.7) for each para-
meter. These two approaches were illustrated in (2.2) and (2.3),

and the same considerations apply in general.
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The computational complexity of (2.7) is o(nk) because
the total number of medians of n-1 or fewer numbers that must
be performed is

k-1 | 1 K]
1+ £ I (n-j)|= 0(n ) (2.10)
i=1 |§=1
and an O(n) algorithm is available for calculating the median

(Knuth, Vol. III, 1973, Section 5.3.3, p. 216).
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3. BREAKDOWN VALUE

Breakdown value is a measure of the ability of an estimator
to resist the effects of outliers (Hodges, 1967, and Hampel, 1971).
It is, roughly speaking, the largest fraction of the data that
can be arbitrarily changed while the estimator is guaranteed to
remain bounded. The arithmetic mean has a breakdown value of 0%,
while the univariate median achieves nearly 50% because [(n-1)/2)
out of n points can be changed while the median remains bounded
(brackets indicate the greatest integer function). This value,
50%, is the highest possible for invariant unbounded estimators.

Median-based regression methods do not necessarily preserve
the highest possible 50% breakdown value of the univariate median.
For example, least absolute error regression (Bassett and Koenker,
1978) has a breakdown value of zero (0%); the figure shows an
example in which the least absolute error regression line can be
controlled by changing only the height of a single point.

The Mood-Brown procedure for bivariate linear regression
(Mood, 1950; and Brown and Mood, 1951) requires that the median
residual be zero for both halves (low X and high X) of the data.
Because half of the data in either group can control the estimated
1ine, the breakdown value is 25%. The breakdown value of Andrews'

median-based regression method is also at most 25% (Andrews, 1974,

Section 5).
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FIGURE 1. The height of a single influential point can

control the least absolute error regression line,
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The overall median procedure (2.5), studied by Thiel(1950)
and Sen(1968) for bivariate linear regression, has a breakdown
value of 29%. In higher dimensions, with subsets of k points

at a time, the breakdown value is 1-2'(1/k).

This is found by
setting the ratio of the number of unchanged to total estimates
e(i],...,ik) equal to 1/2, the breakdown value for the median.
When the primitive estimates e(i].....ik) are themselves
robust, the resulting breakdown value can be higher.

The repeated median procedure has an asymptotic breakdown
value of 50% (as n-=» with k fixed) because each nested median
in (2.7) invofves n or fewer terms (the overall, nonrepeated
median (2.5) involves nk terms at once in a single median).

This is shown in the following theorem which finds the exact

breakdown value in small samples:

-Theorem. The repeated median estimate (2.7) will remain
bounded whenever more than (n+k-1)/2 points are held fixed while
the remaining points are arbitrarily moved, provided each subset

of k of the fixed points determines a value e(i]....,ik).

This theorem is a consequence of a more general lemma.

Lemma. Consider a class of functions ea(i],...,ik) where
lgijgn are integers and different values of o can be thought
of as different data configurations. Suppose AC{1,...,n} has
more than (n+k-1)/2 elements and ea(i1,...,ik) are bounded

(as a varies) whenever i1....,1k€A . Then the repeated median

values 6 calculated from (2.7) are also bounded.
[ 3

.
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Proof. We proceed by induction on k . When k=1 , this

reduces to the breakdown bound of the univariate median. Now
assume the hypotheses of the lemma. Performing the innermost

median (2.6) in (2.7) we see that

: : . Median . .
Oaliqeereniyry =d =g g, 0, 0%aliyeee i)

are bounded whenever i,,...,i _,EA because the median has n-k
terms, of which more than half are bounded. Note that for each
a , the k-fold repeated median of ea(i],...,ik) is identical to
the (k-1)-fold repeated median of ea(i],...,ik_], ). These

are seen to be bounded by using the induction hypothesis. 3
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_ Median

Sa(i],....ik_]. -) = ikﬁ{i"""’ik_]}

ea(i],...,i

k)

are bounded whenever i],...,ik_]GA because the median has n-k

terms, of which more than half are bounded. Note that for each
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4. UNBIASEDNESS, FISHER CONSISTENCY, AND EFFICIENCY

The repeated median estimates are unbiased in the bivariate

Tinear model

Y, = A+BX; +e; , i=1,...,n (4.1)
D

with fixed X,i and symmetric errors for which (el..... en) s

~

(-e],..., -e,). The slope estimate B from (2.1) is symmetrically

distributed about the true slope B because

>~ _ Median [ Median [&j ~ ©j
- [ (253
_[Median [ Wedian (-e5)-(-gy)
i i#i P
D fueds . c. - c.
=_ /Median | Median ( J 1)
i j#i e
j i
" b
=-(B-B) (4.2)

Thus E(§)=B whenever the expectation exists. We find similarly
that R is symmetrically distributed about A for both the
single median (2.2) and the double median (2.3) calculation.

Repeated median estimates are Fisher consistent for bivariate
distributions in which Y given X 1is symmetrically distributed
about a center that is linear in X , so that (X, Y - A - BX) 2
(X, =(Y-A-BX)). Fisher consistency requires that when we evaluate
the estimator at the actual population d!stribution (not at.a

sample), we obtain the population parameter (Cox and Hinkley,
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1974, p. 287). The repeated median procedure (2.7) extends to
allow us to estimate the slope B given a distribution (X, Y)~F .

Assume the X marginal is continuous and define

2 Median Median Y'-Y
B = — (4.3)
(GLYONF L (x', v )~F x'-x]
This is algebraically equivalent to
~  _ Median [ Median (Y'-A-BX')-(Y-A-BX)
B-B = (X,Y)nF
, (X',Y')~F X=X
__[Median ["Median [-(Y'-A-BX')]-[-(Y~A-Bx)]:]
(XOINF L (xe,v0 )nF X' -X
=-(B-8) | (4.4)

where the last equality follows by symmetry. Because these are
fixed, not random, variables, (4.4) must be zero and we have

E-B . Similarly, it can be shown that R-A regardliess of whether
R is found using a single or double median.

The efficiency of repeated median regression, in the presence
of Gaussian errors, is not far from the efficiency of the uni-
variate median, as shown in the table for evenly spaced and for
Gaussian X values. Efficiency here is the ratio of the vari-
ances of the least squares and median-based estimates. For the
univariate median, this ratio is assymptotically 2/v ¥ .64
(Cramer, 1946, p. 369).

Efficiencies for repeated median ﬁegression were estimated

using Monte Carlo computer simulation techniques. For each table
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entry, 10,000 replications were performed in order to achieve an
estimated standard error of the efficiency smaller than .01.
Simulations were done on Princeton University's IBM 3033 Computer
using the IMSL subroutine ggnpm for pseudorandom Gaussian deviates.
Three X designs were chosen: evenly spaced, even Gaussian
percentiles (¢"((i-%)/n), i=1, ..., n where ¢ denotes the
standard Gaussian cumulative distribution function) and random

Gaussian deviates chosen independently for each replication.
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TABLE 1.

Efficiency of repeated median regression
bivariate slope estimation
with
independent Gaussian errors,
by Monte Carlo simulation

X design
aussian
evenly spaced even percentiles random
.69 .64 .53
.73 .68 .61
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